You are here

  • portrait of Professor Adam Veige
    10/22/19 - 9:45 AM to 11:00 AM

    Department Seminar: Professor Adam S. Veige

    Department Seminar

Catalytic Synthesis of Cyclic Polymers

Employing a trianionic pincer ligand, we have discovered a highly active catalyst for the synthesis of cyclic polymers from alkynes. Though initiated with a trianionic pincer ligand supported tungsten catalyst, the active catalyst features a tetraanionic pincer ligand. Details of the catalyst design and a discussion of the polymerization mechanism and active catalyst elucidation will be provided. Access to these cyclic polymers enables the synthesis of commercially relevant polyolefins. Annually produced at a rate of 170 million tons per year, polyolefin manufacturing has changed human quality of life and planet Earth forever. Isotactic polypropylene comprises 25% of all polyolefins manufactured and is applied in countless products globally. Polypropylene and all industrially produced polyolefins are linear molecules containing chain-ends. Exploiting ring expansion polymerization of alkynes, atactic cyclic polypropylene can now be synthesized. Characterization and confirmation of a cyclic topology comes from size exclusion chromatography, dynamic light scattering, viscometry, and rheology. Importantly, the cyclic topology of polypropylene leads to dramatic differences in the physical properties of the polymer including a > 20 °C increase in its glass transition temperature (Tg) compared to the linear version. Additional polyolefins such as the bulk scale synthesis of cyclic poly-1-pentene, and the synthesis of a highly transparent cyclic version of the commodity polyolefin TPXTM, poly(4-methylpentene), will be discussed. Another challenge is to prepare stereoregular cyclic polymers. This seminar will discuss catalyst designs for the ring opening polymerization of norbornene to give cis and syndiotactic enriched cyclic polynorbornene. Featured in the catalyst designs are the concepts of an “Inorganic Enamine” and “Ynene Metathesis” and their relationship to accentuating the nucleophilicity of metal-carbon multiple bonds.

Professor Veige

Professor Veige’s research focuses on the synthesis of highly active catalysts for creating value-added products, including the polymerization of olefins and alkynes. Another area of current interest is the synthesis of in-chain metallopolymers using iClick technology invented by the Veige group.

Veige received a Bachelor of Science degree in chemistry from the University of Western Ontario, Canada, and his doctorate from Cornell University. His post-doctoral work was at the Massachusetts Institute of Technology. In 2004, he joined the Department of Chemistry at the University of Florida. In 2010, Veige was named Director for the Center for Catalysis. 

He has been named a University of Florida Research Foundation Professor, and has been awarded a Camille and Henry Dreyfus New Faculty Award, an Alfred P. Sloan Fellowship, an National Science Foundation Career award, the Dr. Paul Tarrant Fellowship, the University of Florida (UF) Undergraduate Student Mentor of the Year Award, and the UF College of Liberal Arts Graduate Student Mentor of the Year Award. 

  • Event Details

    Location: 331 Smith Hall
    Host: Professor Ian Tonks
    Speakers:
    • Professor Adam S. Veige
    • Adam Veige
    • Department of Chemistry
    • University of Florida
    • Gainesville

Related Files