You are here

  • Professor Robert Knowles
    04/26/18 - 9:45 AM to 11:00 AM

    Sigma-Aldrich Lecture: Professor Robert Knowles

    Sigma-Aldrich Lecture

"Proton-coupled electron transfer in organic synthesis"

Proton-coupled electron transfers (PCETs) are unconventional redox processes in which an electron and proton are exchanged together in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic solar energy conversion technologies, its applications in organic chemistry remain largely unexplored. This talk will highlight our group’s efforts to use PCET as a means to address significant and long-standing synthetic challenges in the areas of free radical chemistry and asymmetric catalysis. In particular we are interested in the ability of PCET to enable catalytic and chemoselective generation of synthetically useful radical intermediates via the direct homolytic activation of common organic functional groups that are energetically inaccessible using conventional H-atom transfer catalysts. Our approach makes use of a simple thermodynamic formalism to rationally identify combinations of proton and electron donors that can formally transfer hydrogen to form very weak bonds (BDFEs <25 kcal/mol) and combinations of proton and electron acceptors that are competent to homolyze strong bonds (BDFEs >105 kcal/mol). Moreover, in PCET reactions the radical intermediates are generated as hydrogen-bonded adducts with the conjugate acid or base of the catalytic proton donor/acceptor. We have found that these non-covalent associations can be strongly stabilizing, providing a basis for asymmetric induction in subsequent bond forming events when chiral proton transfer agents are employed. Applications in complex target synthesis will also be presented.

References:

  • Catalytic Alkylation of Remote C-H Bonds Enabled by Proton-Coupled Electron Transfer. Choi, G. C.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature, 2016, 539, 268–271. 
  • Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Activation of Strong O-H Bonds. Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2016, 138, 10794–10797.
  • Synthetic Applications of Proton-Coupled Electron Transfer. Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546–1556.
  • Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer. Miller, D. C.; Choi, G. C.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492–13495.

Research interests

Professor Knowles' laboratory is interested in addressing unsolved problems in synthetic organic chemistry and asymmetric catalysis. One area of recent focus has been exploring the synthetic applications of proton-coupled electron transfer (PCET) reactions. PCETs are unconventional redox processes in which an electron and proton are exchanged together in a concerted elementary step. While these mechanisms are recognized to play a central a role in biological redox catalysis and inorganic solar energy conversion technologies, their applications in synthetic organic chemistry remain largely unexplored.

Millipore Sigma logo
  • Event Details

    Location: 331 Smith Hall
    Host: Professor Joseph Topczewski
    Speakers:
    • Professor Robert Knowles
    • Robert Knowles
    • Department of Chemistry
    • Princeton University