Amir H. Hoveyda is the Joseph T. and Patricia Vanderslice Millennium Professor of Chemistry in the Department of Chemistry and Merkert Chemistry Center at Boston College. He has been chair of the chemistry department since July 2006. He earned his bachelor’s degree from Columbia University, and his doctorate from Yale University under the tutelage of Professor Stuart L. Schreiber. He was a post-doctorate fellow at Harvard University, working with Professor David A. Evans. Before joining the faculty of Boston College in 1990, Hoveyda worked for Pfizer Central Research in its Cancer Group.

Hoveyda’s honors and awards are numerous and include the Alfred P. Sloan Research Fellowship; Camille Dreyfus Teacher-Scholar Award; American Chemical Society Cope Scholar Award; Novartis Research Award in Synthetic Organic Chemistry; ExxonMobil Excellence in Catalysis Award; Boston College Distinguished Teaching Award; National Science Foundation Creativity Award; National Institutes of Health MERIT Award; Tishler Prize, Harvard University; Yamada-Koga Prize; American Chemical Society Award for Creative Work in Organic Synthesis; and Eni Award. He is active in the scientific community, currently serving on the editorial advisory board for Chemical Communications, on the scientific advisory board for Madera Biosciences, and as a scientific consultant for Celgene/Aviomics and Givaudan Inc. He is also principal co-founder of XiMo Inc.

His research encompasses introducing efficient new chiral catalysts that can be used to synthesize important enantiomerically pure compounds for the preparation of biologically and medicinally active agents. The focus is on important transformations such as conjugate additions and olefin metathesis, which cannot be catalyzed efficiently by existing methods. He is interested in complex molecule total synthesis (testing catalysts), study of reaction mechanism (how do the catalysts work?) and new approaches to catalyst discovery (combinatorial chemistry).

Lecture 1: The Evolution of Catalytic Olefin Metathesis: From Ancillary Process to Purveyor of Stereochemical Identity
9:45 a.m. Tuesday, September 22, 2015, 331 Smith Hall

A reception for Professor Hoveyda will be conducted at 5 p.m. in the Kate & Michael Bárány Conference Room (117/119 Smith Hall). All are welcome to attend.

Several key advances of the past two decades in catalytic olefin metathesis have been transformative. In this lecture, an analysis of the origin of the inception of bidentate benzylidene ligands for Ru-based catalysts will be presented. This will be followed by an overview of the intellectual basis that culminated in the development of Mo-based diolates and stereogenic-at-Ru complexes for enantioselective olefin metathesis. The principles accrued from the study of the latter Ru carbenes and Mo alkylidenes and utilized in the design of stereogenic-at-Mo, W and Ru species applicable to enantioselective and Z-selective olefin metathesis will be then discussed. The influence of the recently introduced catalytic protocols on the design of synthesis routes leading to complex organic molecules and the impact of a better understanding of the mechanistic nuances towards the discovery of stereoselective catalysts will be dissected.